Molecular Mechanisms of Fenretinide‐Induced Apoptosis of Neuroblastoma Cells

2004 
: Synthetic retinoids such as fenretinide [N-(4-hydroxyphenyl)retinamide] induce apoptosis of neuroblastoma cells, act synergistically with chemotherapeutic drugs, and may provide opportunities for novel approaches to neuroblastoma therapy. Fenretinide-induced cell death of neuroblastoma cells is caspase dependent and results in the release of cytochrome c from mitochondria independently of changes in permeability transition. This is mediated by a signaling pathway characterized by the generation of reactive oxygen species (ROS) via 12-lipoxygenase (12-LOX), and an oxidative-stress-dependent induction of the transcription factor, GADD153 and the BCL2-related protein BAK. Upstream events of fenretinide-induced signaling involve increased levels of ceramide as a result of increased sphingomyelinase activity, and the subsequent metabolism of ceramide to gangliosides via glucosylceramide synthase and GD3 synthase. These gangliosides may be involved in the regulation of 12-LOX leading to oxidative stress and apoptosis via the induction of GADD153 and BAK. The targeting of sphingomyelinases or downstream effectors such as 12-LOX or GADD153 may present novel approaches for the development of more effective and selective drugs for neuroblastoma therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    39
    Citations
    NaN
    KQI
    []