Design and Optimization on a Novel High-Performance Ultra-Thin Barrier AlGaN/GaN Power HEMT With Local Charge Compensation Trench

2019 
In this paper, a novel, GaN-based high electron mobility transistor (HEMT) using an ultra-thin barrier (UTB) with a local charge compensation trench (LCCT) is designed and optimized. Because the negative plasma-etching process, as well as the relaxing lattice during the process would introduce equivalent negative charges into the under-LCCT region, the electron will be partially squeezed out from this area. The electric field (E-field) around this region will therefore redistribute smoothly. Owing to this, the proposed LCCT-HEMT performs better in power applications. According to the simulation that is calibrated by the experimental data, the Baliga’s figure of merits (BFOM) of LCCT-HEMT is around two times higher than that of the conventional UTB-HEMT, hinting at the promising potential of proposed HEMT.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    2
    Citations
    NaN
    KQI
    []