The Ca2+ sensor protein CMI1 fine tunes root development, auxin distribution and responses

2018 
Signaling cross-talks between auxin, a regulator of plant development and Ca2+, a universal second messenger have been proposed to modulate developmental plasticity in plants. However, the underlying molecular mechanisms are largely unknown. Here we report that in Arabidopsis roots, auxin elicits specific Ca2+ signaling pattern that spatially coincide with the expression pattern of auxin-regulated genes. We identified the EF-hand protein CMI1 (Ca2+ sensor Modulator of ICR1) as an interactor of the ROP effector ICR1 (Interactor of Constitutively active ROP). CMI1 is monomeric in solution, changes its secondary structure at Ca2+ concentrations ranging from 10-9 to 10-8 M and its interaction with ICR1 is Ca2+ dependent, involving a conserved hydrophobic pocket. cmi1 mutants display an increased auxin response including shorter primary roots, longer root hairs, longer hypocotyls and altered lateral root formation while ectopic expression of CMI1 induces root growth arrest and reduced auxin responses at the root tip. When expressed alone, CMI1 is localized at the plasma membrane, the cytoplasm and in nuclei. Interaction of CMI1 and ICR1 results in exclusion of CMI1 from nuclei and suppression of the root growth arrest. CMI1 expression is directly upregulated by auxin while expression of auxin induced genes is enhanced in cmi1 concomitantly with repression of auxin induced Ca2+ increases in the lateral root cap and vasculature, indicating that CMI1 represses early auxin responses. Collectively, our findings identify a crucial function of Ca2+ signaling and CMI1 in root growth and suggest an auxin-Ca2+ regulatory feedback loop that fine tunes root development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    0
    Citations
    NaN
    KQI
    []