A new therapeutic target for patent ductus arteriosus

2021 
The ductus arteriosus (DA) maintains the fetal circulation by connecting the aorta and pulmonary arteries. Patent ductus arteriosus (PDA) occurs in >70% extremely-low-birth-weight infants. Patients with PDA exhibit circulatory failure, which is caused by left-to-right shunt. The DA immediately contracts after birth in response to the elevation of blood oxygen tension and to the decline in circulating prostaglandin E2 (PGE2). Cyclooxygenase inhibitors targeting smooth muscle cell (SMC) contraction represent only pharmacological treatment for PDA. However, it is important for DA anatomical closure that intimal thickening (IT) is appropriately formed between SMC layer and endothelial cells (EC). IT begins to form before the second-trimester and becomes prominent toward the end of third-trimester as an increase in placenta-derived PGE2. Immature DAs frequently fail to be close due to poorly formed IT. IT consists of extracellular matrices (ECM) and migrated DA-SMCs from the tunica media. A glycoprotein fibulin-1 is expressed in developing cardiovascular system and binds to multiple ECMs. We found that PGE2 increased fibulin-1 via EP4 in DA-SMCs, and Fbln1-deficient mice exhibited PDA with poor IT formation. Although EP4 is a Gs-coupled GPCR, fibulin-1 was secreted from DA-SMCs through the phospholipase C-protein kinase C-non-canonical NFκB signaling pathway. Fibulin-1 bound to DA-EC-derived versican which is a binding partner of hyaluronan, which promoted directional DA-SMC migration toward ECs and contributed to IT formation in the DA. Fibulin-1 upregulation by the activation of specific downstream pathway of EP4 may serve a new pharmacological strategy for PDA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []