Separation and quantification of four isomers of indole-3-acetyl-myo-inositol in plant tissues using high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry

2014 
Indole-3-acetyl-myo-inositol (IAInos) is one of the most important auxin conjugates for storage and transportation of auxin. The information of its composition, distribution, and metabolism is particularly desired for elucidating the related signal transduction pathways of the plant hormones. However, separation and quantification of the four individual IAInos isomers in plant tissues have not been reported so far. In this work, we first synthesized and isolated four IAInos isomers using semi-preparative high-performance liquid chromatography (HPLC). The IAInos isomer structures were characterized using liquid chromatography-electrospray ionization quadrupole time-of-flight tandem mass spectrometry (LC-QTOF/MS) and nuclear magnetic resonance spectroscopy (NMR). Using these pure compounds as internal or external standards, an efficient LC-MS method was developed for simultaneous detection of indole-3-acetic acid, methyl indole-3-acetic acid ester, and the four IAInos isomers in plant tissue samples. The linear working range and lower limit of detection for the four IAInos isomers are 10–2,000 ng mL−1 and 5.0 ng mL−1, respectively. The stabilities and interconversion pathways of IAInos isomers were studied using our synthetic isomers. It was found that two IAInos isomers existed in Zea mays kernels, while all of the four IAInos isomers were present in the roots of Arabidopsis thaliana. The content of IAInos in A. thaliana roots was much lower than in the Z. mays kernels. The methodology in this article provides useful techniques and methods for systematic study on the phytophysiology and phytochemistry of IAA conjugates and other related plant hormones.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    7
    Citations
    NaN
    KQI
    []