Molecular calipers control atomic separation at a metal surface.

2011 
If a molecule controls the length of some other moiety, it can be termed a “molecular caliper”. Here we image individual molecular calipers of this type by scanning tunneling microscopy. These consist of linear polymers of p-diiodobenzene, (pDIB)n, of varying length, 0.7–2.9 nm, physisorbed on Cu(110) at 4.6 K. Through electron-induced reaction these chemically imprint their terminal I-atoms on the copper, 0.7 nm further apart than their initial separations. The physisorbed monomer or polymer, therefore, constitutes a molecular-caliper with variable terminal I..I separation. The localized nature of the I-atom reaction at the copper surface relative to the parent molecule, constitutes a novel finding reported here. It ensures that the separation of the I-atoms in the physisorbed molecular caliper correlates with their subsequent separation when chemisorbed at the surface.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    16
    Citations
    NaN
    KQI
    []