Life in a changing world: climate change impacts on common European birds

2018 
Anthropogenic climate change is predicted to be a major cause of extinctions. Therefore, a major aim of climate change ecology is to understand how species are being impacted and identify which species are most at risk. However, the ability to make these broad generalisations requires large-scale comparative analyses based on appropriate assumptions. This thesis investigates how European birds respond to changes in climate, the validity of several common assumptions, and identifies which species or populations are most at risk based on multiple long-term datasets. Our understanding of how different responses relate and how they affect population persistence is lacking. A conceptual hierarchical framework is introduced in chapter one to better understand and predict when climate-induced trait changes (phenology or physiology) impact demographic rates (survival or reproduction), and subsequently population dynamics. I synthesise the literature to find hypotheses about life-history and ecological characteristics that could predict when population dynamics will likely be affected. An example shows that, although earlier laying with warmer temperatures was associated with improved reproduction, this had no apparent effect on population trends in 35 British birds. Number of broods partly explains which species are most at risk of temperature-induced population declines. It is often assumed that populations within species respond similarly to climate change, and therefore a single value will reflect species-specific responses. Chapter two explores inter- and intra-specific variation in body condition responses to six climatic variables in 46 species over 21 years and 80 sites. Body condition is sensitive to all six variables (primarily in a non-linear way), and declines with warmer temperatures. I find that species signals might not exist as populations of the same species are no more alike than populations of different species. Decreased body condition is typically assumed to have detrimental consequences on species’ vital rates and population dynamics, but this assumption has rarely been tested. Expanding on chapter two, chapter three shows that temperature-induced declines in body condition have no apparent consequences on demography and population dynamics. Instead, temperature has strong effects on reproductive success and population growth rates via unknown traits and demographic rates. Much of the literature investigating climatic impacts assumes that temporal trends accurately reflect responses to climate change, and therefore investigate trait changes over time. In chapter four, I use two long-term datasets to demonstrate that, for four different types of trait responses, trait variation through time cannot be assumed to be due to warming. Non-temperature causal agents are important…
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []