Influence of the synthesis route on the spectroscopic, cytotoxic, and temperature-sensing properties of oleate-capped and ligand-free core/shell nanoparticles.

2022 
Abstract The right choice of synthesis route for upconverting nanoparticles (UCNPs) is crucial for obtaining a well-defined product with a specific application capability. Thus we decided to compare the physicochemical, cytotoxic, and temperature-sensing properties of UCNPs obtained from different rare earth (RE) ions, which has been made for the first time in a single study. The core/shell NaYF4:Yb3+,Er3+/NaYF4 UCNPs were obtained by reaction in a mixture of oleic acid and octadecene, and their highly stable water colloids were prepared using the ligand-free modification method. Both oleate-capped and ligand-free UCNPs exhibited a bright upconversion emission upon 975 nm excitation. Moreover, slope values, emission quantum yields, and luminescence lifetimes confirmed an effective energy transfer between the Yb3+ and Er3+ ions. Additionally, the water colloids of the UCNPs showed temperature-sensing properties with a good thermal sensitivity level, higher than 1 % K−1 at 358 K. Evaluation of the cytotoxicity profiles of the obtained products indicated that cell viability was decreased in a dose-dependent manner in the analyzed concentration range.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    2
    Citations
    NaN
    KQI
    []