Formation of oxide nanotubes via oxidation of Fe, Cu and Ni nanowires and their structural stability: Difference in formation and shrinkage behavior of interior pores
2009
Abstract Changes in the morphology of Fe, Cu and Ni nanowires with a diameter of 55 nm during oxidation at 423–923 K were studied by transmission electron microscopy. Oxide nanotubes with a cylindrical interior pore of uniform diameter were formed after the oxidation of Fe and Cu nanowires in air at 573 and 423 K, respectively, while the Ni nanowires became bamboo-like nanowires of NiO with separate interior voids after oxidation at 673–773 K. Oxide nanotubes of Fe and Cu and the bamboo structures of NiO showed a tendency to shrink into solid oxide nanowires after annealing at higher temperatures in air. In the shrinking process of Fe 3 O 4 nanotubes, however, an array of additional nanovoids was observed along the inner wall of the nanotubes, suggesting the formation of a duplex porous nanostructure. This can be explained by the recombination of vacancies diffusing outward from the inner cylindrical pore.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
26
References
60
Citations
NaN
KQI