Effects of Plasmoid Formation on Sawtooth Process in a Tokamak

2019 
For realistic values of Lundquist number in tokamak plasmas, the 1/1 magnetic island leads to the formation of secondary thin current sheet, which breaks up into a chain of small magnetic islands, called plasmoids. The role of plasmoid dynamics during the sawtooth reconnection process in fusion plasmas remains an unresolved issue. In this study, systematic simulations are performed to investigate the resistive internal kink mode using the full resistive MHD equations implemented in the NIMROD code in a simplified tokamak geometry. For Lundquist number $S\ge1.6\times10^7$, secondary current sheet is found to be unstable to plasmoids during the nonlinear resistive kink mode evolution with a critical aspect ratio of the current sheet of ~70. The merging of small plasmoids leads to the formation of a monster plasmoid that can significantly affect the primary island evolution. This may provide an explanation for the partial reconnection observed in sawtooth experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []