The role of somatosensory models in vocal autonomous exploration

2016 
The present work focuses on two main objectives. Firstly, it highlights the relevance of studying the early stages of language development using machines as an approach to contribute to the future of speech recognizers and synthesizers, user interfaces, active learning techniques, and to the field of robotics and artificial intelligence in general. Secondly, this work introduces some results on the study of the role of somatosensory models in vocal autonomous exploration. In previous works, the roles of intrinsic motivations and motor constraints in early vocal development were studied showing that active learning techniques can be used by artificial agents endowed with a simulated vocal tract to autonomously learn how to produce intended sounds through the use of probabilistic models. This work studies the effects of modifying the somatosensory model, which is used to map motor commands to undesired articulatory configurations, over the intrinsically motivated active learning process. The somatosensory system is modeled as a Gaussian Mixture Model. Herein, some simulations were run varying the structure of the model in order to analyze differences in the results. The effects on the explored sensorimotor regions and the amount of undesired vocal configurations are studied. The simulations presented in this work show that the structure of the current somatosensory model is relevant to the learning process. However, it can be also concluded that in order to reliably characterize the effects of modifying the somatosensory model further simulations must be performed and clear measures for performance should be considered. // El trabajo presentado persigue dos objetivos principales: el primero de ellos es mostrar la necesidad de estudiar las etapas tempranas del desarrollo del lenguaje utilizando maquinas. Estos estudios contribuiran en el desarrollo futuro de sintetizadores y reconocedores de voz, interfaces de usuario e indirectamente al estudio de la inteligencia artificial; el segundo objetivo es presentar nuevos resultados en el estudio sobre el rol de los sistemas somatosensores en la exploracion vocal temprana. En trabajos preliminares fueron estudiados los roles de las motivaciones intrinsecas y las restricciones motoras en el desarrollo vocal temprano. De estos estudios se concluyo que las tecnicas de aprendizaje automatico activo pueden ser utilizadas en conjunto con agentes artificiales dotados con un tracto vocal simulado para aprender autonomamente como producir sonidos especificos. En el presente trabajo se estudian los efectos del cambio de los parametros que definen el modelo probabilistico del sistema somatosensorial, el cual mapea configuraciones motoras con configuraciones articulares indeseadas sobre el proceso de aprendizaje. El sistema somatosensorial es modelado utilizando “Gaussian Mixture Models”. A traves del resultado de una serie de simulaciones donde se modifica la estructura del modelo antes mencionado, se demuestra que la estructura del modelo somatosensorial es relevante para el proceso de aprendizaje. Sin embargo, los resultados tambien indican que para realizar una mejor caracterizacion de los efectos de la modificacion del modelo somatosensorial deben llevarse a cabo mas simulaciones, asi como tomar en consideracion nuevas medidas de calidad del aprendizaje.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []