A population stereotaxic positron emission tomography brain template for the macaque and its application to ischemic model

2019 
Abstract Purpose Positron emission tomography (PET) is a non-invasive imaging tool for the evaluation of brain function and neuronal activity in normal and diseased conditions with high sensitivity. The macaque monkey serves as a valuable model system in the field of translational medicine, for its phylogenetic proximity to man. To translation of non-human primate neuro-PET studies, an effective and objective data analysis platform for neuro-PET studies is needed. Materials and methods A set of stereotaxic templates of macaque brain, namely the Institute of High Energy Physics & Jinan University Macaque Template (HJT), was constructed by iteratively registration and averaging, based on 30 healthy rhesus monkeys. A brain atlas image was created in HJT space by combining sub-anatomical regions and defining new 88 bilateral functional regions, in which a unique integer was assigned for each sub-anatomical region. Results The HJT comprised a structural MRI T1 weighted image (T1WI) template image, a functional FDG-PET template image, intracranial tissue segmentations accompanied with a digital macaque brain atlas image. It is compatible with various commercially available software tools, such as SPM and PMOD. Data analysis was performed on a stroke model compared with a group of healthy controls to demonstrate the usage of HJT. Conclusion We have constructed a stereotaxic template set of macaque brain named HJT, which standardizes macaque neuroimaging data analysis, supports novel radiotracer development and facilitates translational neuro-disorders research.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    2
    Citations
    NaN
    KQI
    []