Temperature-field history dependence of the elastocaloric effect for a strain glass alloy

2022 
Abstract The singular change of the order parameter at the first order martensitic transformation (MT) temperature restricts the caloric response to a narrow temperature range. Here the MT is tuned into a sluggish strain glass transition by defect doping and a large elastocaloric effect appears in a wide temperature range. Moreover, an inverse elastocaloric effect is observed in the strain glass alloy with history of zero-field cooling and is attributed to the slow dynamics of the nanodomains in response to the external stress. This study offers a design recipe to expand the temperature range for good elastocaloric effect.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []