Tissue structure and macromolecular diffusion in umbilical cord. Immobilization of endogenous hyaluronic acid.

1983 
Abstract Diffusion of endogenous hyaluronic acid and 125 I-labelled albumin, monitored by desorption from umbilical cord (Wharton's jelly) slices, was studied in relation to tissue structure. Diffusion of hyaluronic acid was Fickian and some two orders of magnitude slower than that in free solution. After treatment of tissue with trypsin which removes proteoglycan(s) and degrades glycoprotein microfibrils, hyaluronic acid mobility through the collagen fibril network that remains is increased by an order of magnitude. These findings indicate that the mobility of hyaluronic acid in tissue is reduced both by the collagen network and by the presence of proteoglycan(s) and/or microfibrils. Estimates of the reduction in mobility due to physical entanglements with the fibrillar networks show that these play a major role The mobility of hyaluronic acid found for intact tissue is sufficient for it to permeate the extracellular space within its metabolic turnover. time. Labelled albumin diffusion is intact tissue, on the other hand, is reduced by only some 30% relative to free solution. This is consistent with the approximate 10% reduction found for the polysaccharide-free tissue (given by the excluded volume fraction) and the approximate 20% reduction expected for the polysaccharides in the interstitial fluid. Similar effects appear to be involved in the mobility of endogenous diffusible proteins in tissue.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    27
    Citations
    NaN
    KQI
    []