Derivation of K-matrix reaction theory in a discrete basis formalism

2020 
Abstract The usual derivations of the S and K matrices for two-particle reactions proceed through the Lippmann–Schwinger equation with formal definitions of the incoming and outgoing scattering states. Here we present a simpler alternative derivation that is carried out completely in the Hamiltonian representation, using a discrete basis of configurations for the scattering channels as well as the quasi-bound configurations of the combined fragments. We use matrix algebra to derive an explicit expression for the K matrix in terms of the Hamiltonian of the internal states of the compound system and the coupling between the channels and the internal states. The formula for the K matrix includes explicitly a real dispersive shift matrix to the internal Hamiltonian that is easily computed in the formalism. That expression is applied to derive the usual form of the S matrix as a sum over poles in the complex energy plane. Some extensions and limitations of the discrete-basis Hamiltonian formalism are discussed in the concluding remarks and in the Appendix.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []