Modelling analysis on the effective elimination of toxic pollutant from aquatic environment using pyrolysis assisted Palmyra palm male inflorescence.

2021 
Abstract In this study adsorption of Cd(II) ions using the pyrolysis assisted Palmyra palm male inflorescence (PAPMI) was systematically examined. A batch adsorption study was carried out to determine the type of interactions and removal efficiency which is based on the surface property of PAPMI. The diverse parameters which affect the adsorption performance of PAPMI for Cd(II) ion removal were optimized: biosorbent dose – 1.25 g/L, pH – 6.0, temperature – 303 K, initial cadmium ions concentration – 50 mg/L and contact time – 40 min. Pseudo-first order kinetics and Langmuir isotherm models were more suitable to describe the adsorption kinetics and isotherm, respectively. Therefore, modeling studies portrayed the present Cd(II) ions adsorption on PAPMI as monolayer adsorption occurs on the homogeneous surface and follows the physisorption mechanism. The maximum adsorption capacity of the synthesized PAPMI was examined as 233.2 mg/g from the equilibrium isotherm investigation. Based on the calculated thermodynamic parameters (ΔGo, ΔHo and ΔSo) values, the present Cd(II) ions adsorption on PAPMI was explicated as feasible, and exothermic. The outcome proposed that Palmyra palm male inflorescence can be a suitable adsorbent for expulsion of Cd(II) ions from aqueous environment. In the interim, the utilization of pyrolysis assisted is a viable and fast uptake innovation for the removal of heavy metals from water environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    6
    Citations
    NaN
    KQI
    []