TENOGENIC PHENOTYPE MAINTENANCE AND DIFFERENTIATION USING MACROMOLECULAR CROWDING AND MECHANICAL LOADING

2018 
Cell-based tissue engineering strategies for tendon repair have limited clinical applicability due to delayed extracellular matrix (ECM) deposition and subsequent prolonged culture periods, which lead to tenogenic phenotypic drift. Deposition of ECM in vitrocan be enhanced by macromolecular crowding (MMC), a biophysical phenomenon that governs the intra- and extra-cellular milieu of multicellular organisms2, which has been described to accelerate ECM deposition in human tenocytes1. A variety of cell sources have been studied for tendon repair including tenocytes, dermal fibroblasts and mesenchymal stem cells (MSCs)3and various biophysical, biochemical and biological tools have been used to mimic tendon microenvironment and induce phenotype maintenance in long term cultures or differentiation4. Therefore, we propose to assess the combined effect of macromolecular crowding and mechanical loading on different cell sources to determine their suitability for the in vitro fabrication of tendon-like tissue.Human...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []