Effects of specific antisera targeting peritrophic matrix-associated proteins in the sand fly vector Phlebotomus papatasi.

2016 
Abstract In many hematophagous insects, the peritrophic matrix (PM) is formed soon after a blood meal (PBM) to compartmentalize the food bolus. The PM is an important component of vector competence, functioning as a barrier to the development of many pathogens including parasites of the genus Leishmania transmitted by sand flies. PM morphology and permeability are associated with the proteins that are part of the PM scaffolding, including several peritrophins, and chitin fibers. Here, we assessed the effects of specific antisera targeting proteins thought to be an integral part of the PM scaffolding and its process of maturation and degradation. Phlebotomus papatasi sand flies were fed with red blood cells reconstituted with antisera targeting the chitinase PpChit1, and the peritrophin PpPer2. Sand fly midguts were dissected at different time points and processed for light microscopy (LM), confocal and transmission electron (TEM) microscopies (24, 42–46, 48 and 72 h PBM), scanning electron (SEM) (48 h PBM) and atomic force (AFM) (30 h PBM) microscopies. TEM and WGA-FITC staining indicate PM degradation was significantly delayed following feeding of flies on anti-PpChit1. AFM analysis at 30 h PBM point to an increase in roughness’ amplitude of the PM of flies that fed on either anti-PpChit1 or anti-PpPer2. Collective, our data suggest that antibodies targeting PM-associated proteins affects the kinetics of PM maturation, delaying its degradation and disruption and are potential targets on transmission-blocking vaccines strategies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    8
    Citations
    NaN
    KQI
    []