Signals transmitted along retinal axons in Drosophila: Hedgehog signal reception and the cell circuitry of lamina cartridge assembly

1998 
The arrival of retinal axons in the brain of Drosophila triggers the assembly of glial and neuronal precursors into a ‘neurocrystalline’ array of lamina synaptic ‘cartridges’. Hedgehog, a secreted protein, is an inductive signal delivered by retinal axons for the initial steps of lamina differentiation. In the development of many tissues, Hedgehog acts in a signal relay cascade via the induction of secondary secreted factors. Here we show that lamina neuronal precursors respond directly to Hedgehog signal reception by entering S-phase, a step that is controlled by the Hedgehog-dependent transcriptional regulator Cubitus interruptus. The terminal differentiation of neuronal precursors and the migration and differentiation of glia appear to be controlled by other retinal axon-mediated signals. Thus retinal axons impose a program of developmental events on their postsynaptic field utilizing distinct signals for different precursor populations. SUMMARY
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    98
    References
    100
    Citations
    NaN
    KQI
    []