Effect of Surface Machining on the Fatigue Life of Low Alloy Steel for Hydrogen Pressure Vessels
2007
The effect of surface machining on fatigue life in high pressure hydrogen gas was investigated. The test was conducted under the elastic range under 45MPa gaseous hydrogen environment by the ground specimen which were machined so that the surface roughness to be Rmax = 19μm(Mark: 19s), 26μm(26s) and 93μm(93s) and by the polished specimen which are prepared so that the surface roughness to be Rmax = 1μm(1s), 3.6μm(3.6s) and 10μm(10s). The hydrogen fatigue life of ground specimens was considerably reduced with increasing surface roughness as compared to the fatigue life in air at the same surface condition. On the other hand, for the annealed conditions of the ground specimen, the reduction by hydrogen effect was fairly small. The residual stress for the ground specimen at the surface rises sharply in tension while the residual stress for the annealed specimen was nearly equal to zero. We have shown that the hydrogen fatigue damage can be evaluated by obtaining the information about residual stress on surface, stress concentration by maximum surface roughness and the threshold stress intensity SH above which hydrogen fatigue damage occurs.Copyright © 2007 by ASME
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
2
Citations
NaN
KQI