Transmission probability of poly(dA)-poly(dT) DNA in electric field

2017 
Transmission probability of poly(dA)-poly(dT) DNA in electric field for several voltages has been studied. The DNA molecule is modeled by using tight binding Hamiltonian model. It is contacted to electrodes at both sides with 32 long base pairs. The voltage is applied at the electrodes and assumed it can change base onsite energy linearly, so can influence charge transmission in DNA chain. The transmission probability is calculated using transfer matrix and scattering matrix method. The transmission probability results also be compared at different temperatures and twisting motion frequencies. The results show that as the voltage increases, the transmission probability at transmission region with energy higher energy than Fermi energy increases. The increment of transmission probability with voltage increment becomes larger at higher twisting motion frequency, but it becomes smaller at higher temperature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []