The Low Dimensional Co-Based Nanorods as a Novel Platform for Selective Hydrogenation of Cinnamaldehyde

2019 
Since hydrogenation of C=C bond in the cinnamaldehyde is thermodynamically favored, the selective hydrogenation of C=O group is challenging. Developing effective catalysts for this transformation has been hindered by the intrinsic disadvantages of traditional materials for decades. Hereby, we report the synthesis of the low dimensional Co based nanorods (NRs) as the effective platform for C=O groups hydrogenation in the conjugated compounds. The Pt/Co-NRs catalyst is simply fabricated by loading the Pt nano-particles (NPs) on the Co-NRs and the stability of the Co-NRs support is improved by coordination between the Pt NPs and the pyridinic N ring. Resorting to XRD, FT-IR, XPS, HRTEM, DTG-TG characterization methods, the catalytic mechanism for C=O bond hydrogenation has been proposed. The synergistic effects of K+ and OH− enhance the polarization of C=O group, leading to more adsorption of C=O groups on the Co-NRs so as to promote its hydrogenation performance. In the absence of spatial micropores in low dimensional Co based nanorods, the Pt/Co-NRs catalyst is more advantageous for mass transfer. Under optimal conditions, the conversion of cinnamaldehyde is 97.9% with 92.7% selectivity of cinnamyl alcohol within 3 h. In addition, the selectivity of cinnamyl alcohol changes slightly (only 2.4% fluctuations) after five recycle tests.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    2
    Citations
    NaN
    KQI
    []