Prediction of primary somatosensory neuron activity during active tactile exploration

2016 
The brain receives information from the world through the senses. In particular, cells called sensory neurons can detect signals from the environment and relay the information to the brain. A critical test of how well we understand the role of a given sensory neuron is whether it is possible to predict its activity under natural conditions. Previous research has succeeded in predicting the responses of sensory neurons in animals that were anaesthetised. However, it has been difficult to extend this approach to awake animals. Mice and other rodents rely on their whiskers to tell them about their surroundings. Campagner et al. set out to predict how the sensory neurons that send information from whiskers (or ‘whisker neurons’) to the brain would respond in awake mice that were actively exploring an object in their environment. The approach involved using high-speed video (1,000 frames per second) to film the whiskers while the mice used them to explore a thin metal pole. At the same time, Campagner et al. recorded the electrical activity of the whisker neurons. The videos were used to calculate the forces acting on the whiskers, and then computational models were used to relate the activity of the neurons to the forces. This approach allowed Campagner et al. to predict the responses of the whisker neurons, even when the mice were exploring the pole freely and unpredictably, simply from knowledge of the forces that were acting on the whiskers. Together, these findings move the field of neuroscience forward by showing that sensory signals and neuronal responses can be correlated even in an awake animal. A key challenge for the future will be to further extend the approach to investigate how the signal conveyed by sensory neurons is transformed by neural circuits within the brain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    59
    Citations
    NaN
    KQI
    []