Role of MOF surface defects on the microscopic structure of MOF/polymer interfaces: A computational study of the ZIF-8/PIMs systems

2017 
Abstract The influence of defects at the metal-organic framework (MOF) surface on the microscopic structure of a MOF/polymer composite has been studied by a computational methodology that combines density functional theory calculations with force field-based molecular dynamics simulations. This has been applied to composites formed by ZIF-8 and two different polymers of intrinsic microporosity: PIM-1 and PIM-EA-TB. Analysis of the MOF/polymer interactions, surface coverage, polymer conformation/stiffness and a full characterization of the interfacial voids are provided. We found that, although the nature of the MOF/polymer interactions changes in the presence of defects, the coverage and conformation of the polymer as well as the morphology of the “interfacial microvoids” remain practically unchanged from a microscopic point of view. These results suggest that there is no microscopic evidence that defective MOF surfaces drastically change the geometry of the MOF/polymer interface and the strength of the physisorption-type interactions in play.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    23
    Citations
    NaN
    KQI
    []