Identification of initially appearing glycine‐immunoreactive neurons in the embryonic zebrafish brain

2014 
Glycine is a major inhibitory neurotransmitter in the central nervous system of vertebrates. Here, we report the initial development of glycine-immunoreactive (Gly-ir) neurons and fibers in zebrafish. The earliest Gly-ir cells were found in the hindbrain and rostral spinal cord by 20 h post-fertilization (hpf). Gly-ir cells in rhombomeres 5 and 6 that also expressed glycine transporter 2 (glyt2) mRNA were highly stereotyped; they were bilaterally located and their axons ran across the midline and gradually turned caudally, joining the medial longitudinal fascicles in the spinal cord by 24 hpf. Gly-ir neurons in rhombomere 5 were uniquely identified, since there was one per hemisegment, whereas the number of Gly-ir neurons in rhombomere 6 were variable from one to three per hemisegment. Labeling of these neurons by single-cell electroporation and tracing them until the larval stage revealed that they became MiD2cm and MiD3cm, respectively. The retrograde labeling of reticulo-spinal neurons in Tg(glyt2:gfp) larva, which express GFP in Gly-ir cells, and a genetic mosaic analysis with glyt2:gfp DNA construct also supported this notion. Gly-ir cells were also distributed widely in the anterior brain by 27 hpf, whereas glyt2 was hardly expressed. Double staining with anti-glycine and anti-GABA antibodies demonstrated distinct distributions of Gly-ir and GABA-ir cells, as well as the presence of doubly immunoreactive cells in the brain and placodes. These results provide evidence of identifiable glycinergic (Gly-ir/glyt2-positive) neurons in vertebrate embryos, and they can be used in further studies of the neurons' development and function at the single-cell level. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 616–632, 2014
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    16
    Citations
    NaN
    KQI
    []