Multimodal EEG and Keystroke Dynamics Based Biometric System Using Machine Learning Algorithms
2021
Electroencephalography (EEG) based biometric systems are gaining attention for their anti-spoofing capability but lack accuracy due to signal variability at different psychological and physiological conditions. On the other hand, keystroke dynamics-based systems achieve very high accuracy but have low anti-spoofing capability. To address these issues, a novel multimodal biometric system combining EEG and keystroke dynamics is proposed in this paper. A dataset was created by acquiring both keystroke dynamics and EEG signals simultaneously from 10 users. Each user participated in 500 trials at 10 different sessions (days) to replicate real-life signal variability. A machine learning classification pipeline is developed using multi-domain feature extraction (time, frequency, time-frequency), feature selection (Gini impurity), classifier design, and score level fusion. Different classifiers were trained, validated, and tested for two different classification experiments – personalized and generalized. For identification and authentication, 99.9% and 99.6% accuracies are achieved, respectively for the Random Forest classifier in 5 fold cross-validation. These results outperform the individual modalities with a significant margin (~5%). We also developed a binary template matching-based algorithm, which gives 93.64% accuracy 6X faster. The proposed method can be considered secure and reliable for any kind of biometric identification and authentication.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
36
References
0
Citations
NaN
KQI