KNN 알고리즘을 활용한 고속도로 통행시간 예측
2014
There are various methodologies to forecast the travel time using real-time data but the K-nearest neighborhood (KNN) method in general is regarded as the most one in forecasting when there are enough historical data. The objective of this study is to evaluate applicability of KNN method. In this study, real-time and historical data of toll collection system (TCS) traffic flow and the dedicated short range communication (DSRC) link travel time, and the historical path travel time data are used as input data for KNN approach. The proposed method investigates the path travel time which is the nearest to TCS traffic flow and DSRC link travel time from real-time and historical data, then it calculates the predicted path travel time using weight average method. The results show that accuracy increased when weighted value of DSRC link travel time increases. Moreover the trend of forecasted and real travel times are similar. In addition, the error in forecasted travel time could be further reduced when more historical data could be available in the future database.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI