Within-hemifield posture changes affect tactile–visual exogenous spatial cueing without spatial precision, especially in the dark

2014 
We investigated the effects of seen and unseen within-hemifield posture changes on crossmodal visual–tactile links in covert spatial attention. In all experiments, a spatially nonpredictive tactile cue was presented to the left or the right hand, with the two hands placed symmetrically across the midline. Shortly after a tactile cue, a visual target appeared at one of two eccentricities within either of the hemifields. For half of the trial blocks, the hands were aligned with the inner visual target locations, and for the remainder, the hands were aligned with the outer target locations. In Experiments 1 and 2, the inner and outer eccentricities were 17.5o and 52.5o, respectively. In Experiment 1, the arms were completely covered, and visual up–down judgments were better when on the same side as the preceding tactile cue. Cueing effects were not significantly affected by hand or target alignment. In Experiment 2, the arms were in view, and now some target responses were affected by cue alignment: Cueing for outer targets was only significant when the hands were aligned with them. In Experiment 3, we tested whether any unseen posture changes could alter the cueing effects, by widely separating the inner and outer target eccentricities (now 10o and 86o). In this case, hand alignment did affect some of the cueing effects: Cueing for outer targets was now only significant when the hands were in the outer position. Although these results confirm that proprioception can, in some cases, influence tactile–visual links in exogenous spatial attention, they also show that spatial precision is severely limited, especially when posture is unseen.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    5
    Citations
    NaN
    KQI
    []