Visual working memory load disrupts the space-based attentional guidance of target selection

2019 
During visual search, the selection of target objects is guided by stored representations of target-defining features (attentional templates). It is commonly believed that such templates are maintained in visual working memory (WM), but empirical evidence for this assumption remains inconclusive. Here, we tested whether retaining non-spatial object features (shapes) in WM interferes with attentional target selection processes in a concurrent search task that required spatial templates for target locations. Participants memorised one shape (low WM load) or four shapes (high WM load) in a sample display during a retention period. On some trials, they matched them to a subsequent memory test display. On other trials, a search display including two lateral bars in the upper or lower visual field was presented instead, and participants reported the orientation of target bars that were defined by their location (e.g,, upper left or lower right). To assess the efficiency of attentional control under low and high WM load, EEG was recorded and the N2pc was measured as a marker of attentional target selection. Target N2pc components were strongly delayed when concurrent WM load was high, indicating that holding multiple object shapes in WM competes with the simultaneous retention of spatial attentional templates for target locations. These observations provide new electrophysiological evidence that such templates are maintained in WM, and also challenges suggestions that spatial and non-spatial content are represented in separate independent visual WM stores.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    5
    Citations
    NaN
    KQI
    []