Photocatalytic degradation of organic dyes using WO3-doped ZnO nanoparticles fixed on a glass surface in aqueous solution

2019 
Abstract The present study aimed at evaluating the application of tungsten oxide-doped zinc oxide nanoparticles for the photocatalytic degradation of Direct Blue 15 dye in a sequencing batch reactor. ZnO nanoparticles were doped with WO 3 through hydrothermal synthesis method. To characterize the synthesized nanoparticles scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, zeta potential analysis, and ultraviolet–visible spectroscopy were used. The radiation source in this study was five 6 W UV lamps. Operational parameters affecting the process, namely pH, light intensity, dopant percentage, dye concentration, and contact time, were evaluated. The results of the present study revealed that the efficiency of the photocatalytic process for the degradation of organic dyes was higher at acidic pH values than neutral or basic values. In addition, upon increasing the light intensity from 172 to 505 W/m 2 , the efficacy of dye degradation was enhanced from 27.8 to 73.5%. Increasing the concentration of the dopant percentage from 1 to 5% w/v increased the degradation efficacy from 30.69 to 73.1%. Increasing the initial dye concentration from 20 to 100 mg/L decreased the degradation efficacy from 86.9 to 37.5%. Photocatalytic process using WO 3 -doped ZnO nanoparticles fixed on a glass surface thus was proven to show a good efficiency for the degradation of organic dye in aquatic solutions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    44
    Citations
    NaN
    KQI
    []