Load Balanced and Energy Aware Cloud Resource Scheduling Design for Executing Data-intensive Application in SDVC

2021 
Cloud computational platform provisions numerous cloud-based Vehicular Adhoc Network (VANET) applications. For providing better bandwidth and connectivity in dynamic manner, Software Defined VANET (SDVN) is developed. Using SDVN, new VANET framework are modeled; for example, Software Defined Vehicular Cloud (SDVC). In SDVC, the vehicle enables virtualization technology through SDVN and provides complex data-intensive workload execution in scalable and efficient manner. Vehicular Edge Computing (VEC) addresses various challenges of fifth generation (5G) workload applications performance and deadline requirement. VEC aid in reducing response time, delay with high reliability for workload execution. Here the workload tasks are executed to nearby edge devices connected to Road Side Unit (RSU) with limited computing capability. If the resources are not available in RSU, then the task execution is offloaded through SDN toward heterogeneous cloud server. Existing workload scheduling in cloud environment are designed considering minimizing cost and delay; however, very limited work has been done considering energy minimization for workload execution. This paper presents a Load Balanced and Energy Aware Cloud Resource Scheduling (LBEACRS) design for heterogeneous cloud framework. Experiment outcome shows the LBEACRS achieves better makespan and energy efficiency performance when compared with standard cloud resource scheduling design.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []