Effect of material selection and background impurity on interface property and resulted CIP-GMR performance

2009 
In this paper, we investigated the effect of background base pressure, wafer-transferring time between process modules, and stack layer material selection on the current-in-plane giant magneto-resistive (CIP-GMR) interface properties and the resulted CIP-GMR performance. Experimental results showed that seed layer/AFM interface, AFM/pinned layer (PL) interface, pinned layer/Ru interface, and reference layer (RL)/Cu spacer interface are among the most critical ones for a CIP-GMR device. By reducing the background impurity level (water moisture and oxygen), optimizing the wafer process flow sequence, and careful stack-layer material selection, such critical interfaces in a CIP-GMR device can be preserved. Consequently, a much robust GMR performance control can be achieved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    10
    Citations
    NaN
    KQI
    []