Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol

2014 
Abstract An isolated, solvent-extracted lignin from candlenut ( Aleurites moluccana ) biomass was subjected to catalytic depolymerization in the presence of supercritical methanol, using a range of porous metal oxides derived from hydrotalcite-like precursors. The most effective catalysts in terms of lignin conversion to methanol-soluble products, without char formation, were based on copper in combination with other dopants based on relatively earth-abundant metals. Nearly complete conversion of lignin to bio-oil composed of monomers and low-mass oligomers with high aromatic content was obtained in 6 h at 310 °C using a catalyst based on a Cu- and La-doped hydrotalcite-like precursor. Product mixtures were characterized by NMR spectroscopy, gel permeation chromatography, and GC–MS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    71
    Citations
    NaN
    KQI
    []