Linewidth of the Laser Optical Frequency Comb with Arbitrary Temporal Profile.

2018 
For many applications Optical Frequency Combs (OFCs) require a high degree of temporal coherence (narrow linewidth). Commonly OFCs are generated in nonlinear media from a monochromatic narrow linewidth laser sources or from a mode-locked laser pulses but in the all-important mid-infrared (MIR) and terahertz (THz) regions of spectrum OFCs can be generated intrinsically by the free-running quantum cascade lasers (QCLs) with high efficiency. These combs do not look like conventional OFCs as the phases of each mode are different and in temporal domain the OFC is a seemingly random combination of amplitude- and phase-modulated signals rather than a short pulse. Despite this pseudo-randomness, the experimental evidence suggests that the linewidth of the QCL OFC is just as narrow as that of a QCL operating in the single mode. While universally acknowledged, this seemingly observation is not fully understood. In this work we rigorously prove this fact by deriving the expression for the Schawlow-Townes linewidth of QCL OFC and offer a transparent physical interpretation based on orthogonality of laser modes, indicating that despite their very different temporal profiles MIR and THz QCL OFCs are just as good for most applications as any other OFC.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []