Lorentz violation and generalized uncertainty principle

2017 
Investigations on possible violation of Lorentz invariance have been widely pursued in the last decades, both from theoretical and experimental sides. A comprehensive framework to formulate the problem is the standard model extension (SME) proposed by A.Kostelecky, where violation of Lorentz invariance is encoded into specific coefficients. Here we present a procedure to link the deformation parameter $\beta$ of the generalized uncertainty principle (GUP) to the SME coefficients of the gravity sector. The idea is to compute the Hawking temperature of a black hole in two different ways. The first way involves the deformation parameter $\beta$, and therefore we get a deformed Hawking temperature containing the parameter $\beta$. The second way involves a deformed Schwarzschild metric containing the Lorentz violating terms $\bar{s}^{\mu\nu}$ of the gravity sector of the SME. The comparison between the two different techniques yields a relation between $\beta$ and $\bar{s}^{\mu\nu}$. In this way bounds on $\beta$ transferred from $\bar{s}^{\mu\nu}$ are improved by many orders of magnitude when compared with those derived in other gravitational frameworks. Also the opposite possibility of bounds transferred from $\beta$ to $\bar{s}^{\mu\nu}$ is briefly discussed.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []