Weight-adjusted discontinuous Galerkin methods: wave propagation in heterogeneous media

2016 
Time-domain discontinuous Galerkin (DG) methods for wave propagation require accounting for the inversion of dense elemental mass matrices, where each mass matrix is computed with respect to a parameter-weighted L2 inner product. In applications where the wavespeed varies spatially at a sub-element scale, these matrices are distinct over each element, necessitating additional storage. In this work, we propose a weight-adjusted DG (WADG) method which reduces storage costs by replacing the weighted L2 inner product with a weight-adjusted inner product. This equivalent inner product results in an energy stable method, but does not increase storage costs for locally varying weights. A-priori error estimates are derived, and numerical examples are given illustrating the application of this method to the acoustic wave equation with heterogeneous wavespeed.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    3
    Citations
    NaN
    KQI
    []