DNA strand scission by neocarzinostatin: molecular recognition process responsible for site-specificity.

1990 
: A series of hexanucleotides possessing A-T, G-C, inosine (I)-C and 2-aminoadenine (ANH2)-T base pairs at 5'-side of the target thymine were prepared and their selectivity for C-5' and C4' oxidation in the NCS-mediated degradation was investigated. Quantitative product analysis indicated that preferential C5' oxidation of deoxyribose moiety of the target T occurs at -5'-AT- and 5'-IT- sites, whereas C5' and C4' oxidation occurs competitively at T of -5'-GT- and -5'-ANH2T- sites. Based on the experimental results, an intercalation model that permits competitive hydrogen abstraction from C5' and C4' of deoxyribose moiety has been proposed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []