Increasing triacylglycerol formation and lipid storage by unsaturated lipids protects renal proximal tubules in diabetes

2021 
In diabetic patients, dyslipidemia frequently contributes to organ damage such as diabetic kidney disease (DKD). DKD is associated with excessive renal deposition of triacylglycerol (TAG) in lipid droplets (LD). Yet, it is unclear whether LDs play a protective or damaging role and how this might be influenced by dietary patterns. By using a diabetes mouse model, we find here that high fat diet enriched in the unsaturated oleic acid (OA) caused more lipid storage in LDs in renal proximal tubular cells (PTC) but less tubular damage than a corresponding butter diet with the saturated palmitic acid (PA). Mechanistically, we identify endoplasmic reticulum (ER) stress as the main cause of PA-induced PTC injury. ER stress is caused by elevated cellular levels of saturated TAG precursors and to higher membrane order in the ER. The resulting cell death is preceded by a transcriptional rewiring of phospholipid metabolism. Simultaneous addition of OA rescues the cytotoxic effects by normalizing membrane order and by increasing the total TAG amount. The latter also stimulates the formation of LDs that in turn can release unsaturated lipids upon demand by lipolysis. Our study thus clarifies mechanisms underlying PA-induced cell stress in PTCs and emphasizes the importance of olive oil for the prevention of DKD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    0
    Citations
    NaN
    KQI
    []