Immunity Depletion, Telomere Imbalance, and Cancer-associated Metabolism Pathway Aberrations in Intestinal Mucosa upon Caloric Restriction

2021 
Systematic analysis of calorie restriction (CR) mechanisms and pathways in cancer biology has not been carried out, leaving therapeutic benefits unclear. Using a systems biology approach and metadata analysis, we studied gene expression changes in the response of normal mouse duodenum mucosa (DM) to short-term (2-weeks) 25% CR as a biological model. We found a high similarity of gene expression profiles in human and mouse DM tissues. Surprisingly, 26% of the 467 CR responding differential expressed genes (DEGs) in mice consist of cancer-associated genes, most never studied in CR contexts. The DEGs were enriched with over-expressed cell cycle, oncogenes, and metabolic reprogramming pathways (MRP) that determine tissue-specific tumorigenesis, cancer, and stem cell activation; tumor suppressors and apoptosis genes were under-expressed. DEG enrichments suggest a misbalance in telomere maintenance and activation of metabolic pathways playing dual (anti-cancer and pro-oncogenic) roles. Immune system genes (ISGs) consist of 37% of the total DEGs; the majority of ISGs are suppressed, including cell-autonomous immunity and tumor immune evasion controls. Thus, CR induces MRP suppressing multiple immune mechanics and activating oncogenic pathways, potentially driving pre-malignant and cancer states. These findings may change the paradigm regarding the anti-cancer role of CR and initiate specific treatment target development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    111
    References
    0
    Citations
    NaN
    KQI
    []