“Freeing” Graphene from Its Substrate: Observing Intrinsic Velocity Saturation with Rapid Electrical Pulsing

2016 
Rapid (nanosecond-scale) electrical pulsing is used to study drift-velocity saturation in graphene field-effect devices. In these experiments, high-field pulses are utilized to drive graphene’s carriers on time scales much faster than that on which energy loss to the underlying substrate can occur, thereby allowing the observation of the highest saturation velocities reported to date. In a dramatic departure from the behavior exhibited by conventional metals and semiconductors, as the electron or hole density is reduced toward the charge-neutrality point, the drift velocity is found to reach values comparable to the Fermi velocity itself. Corresponding current densities are as large as 109 A/cm2, similar to the values reported for carbon nanotubes and for graphene-on-diamond transistors. In essence, our approach of rapid pulsing allows us to “free” graphene from the deleterious influence of its substrate, revealing a pathway to achieve the superior electrical performance promised by this material. The use...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    38
    Citations
    NaN
    KQI
    []