Does Super Resolution Fluorescence Microscopy Obsolete Previous Microscopic Approaches to Protein Co-localization?

2015 
Conventional microscopy techniques, namely the confocal microscope or deconvolution processes, are resolution limited, ~250 nm, by the diffraction properties of light as developed by Ernst Abbe in 1873. This diffraction limit is appreciably above the size of most multi-protein complexes, which are typically 20–50 nm in diameter. In the mid 2000s, biophysicists moved beyond the diffraction barrier by structuring the illumination pattern and then applying mathematical principles and algorithms to allow a resolution of approximately 100 nm, sufficient to address protein subcellular colocalization questions. This “breaking” of the diffraction barrier, affording resolution beyond 200 nm is termed super resolution microscopy. More recent approaches include single molecule localization (such as PhotoActivated Localization Microscopy (PALM)/STochastic Optical Reconstruction Microscopy (STORM)) and point spread function engineering (such as STimulated Emission Depletion (STED) microscopy). In this review, we explain basic principles behind currently commercialized super resolution setups and address advantages and considerations in applying these techniques to protein colocalization in biological systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    29
    Citations
    NaN
    KQI
    []