Synthetic prostacyclin agonist attenuates pressure-overloaded cardiac fibrosis by inhibiting fibroblast-to-myofibroblast transition

2020 
Abstract Fibroblast-to-myofibroblast transition (FMT) is the primary inducer of cardiac fibrosis. ONO-1301, a synthetic prostacyclin agonist, reportedly promotes tissue fibrosis repair by enhancing anti-fibrotic cytokine production. We hypothesized that ONO-1301 attenuates pressure-overloaded cardiac fibrosis by modulating FMT and generated a pressure-overloaded murine model via transverse aortic constriction (TAC) to evaluate the in vivo effects of ONO-1301. Cardiac fibrosis, left ventricular dilatation, and systolic dysfunction were established four weeks after TAC; however, ONO-1301 treatment initiated two weeks after TAC significantly attenuated those effects. Furthermore, ONO-1301 treatment significantly upregulated expression levels of cardioprotective cytokines such as vascular endothelial growth factor and hepatocyte growth factor in TAC hearts, whereas FMT-related factors including transforming growth factor (TGF)-β1 and connective tissue growth factor were significantly downregulated. The number of α-smooth muscle actin (α-SMA)- and vimentin-positive cells, representing fibroblast-originated cells transitioned into myofibroblasts, was significantly reduced in ONO-1301-treated TAC hearts. We isolated cardiac fibroblasts (CFs) from the left ventricles of adult male mice and assessed the effects of ONO-1301 on CFs stimulated by TGF-β. Results showed that ONO-1301 co-incubation significantly suppressed TGF-β-induced α-SMA expression and collagen synthesis, and significantly inhibited TGF-β-induced CF proliferation and migration. Our findings suggest that ONO-1301 ameliorates pressure overloaded cardiac fibrosis by inhibiting TGF-β-induced FMT.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []