High-Density Lipoprotein Particle Subfractions in Heart Failure With Preserved or Reduced Ejection Fraction

2019 
Abstract Background Circulating high-density lipoprotein particle (HDL-P) subfractions impact atherogenesis, inflammation, and endothelial function, all of which are implicated in the pathobiology of heart failure (HF). Objectives The authors sought to identify key differences in plasma HDL-P subfractions between patients with HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF) to determine their prognostic utility. Methods Patients with HFrEF (n = 782), HFpEF (n = 1,004), and no HF (n = 4,742) were identified in the CATHGEN (Catheterization Genetics) biorepository of sequential patients undergoing cardiac catheterization. Nuclear magnetic resonance–based lipoprotein profiling was performed on frozen fasting plasma obtained at catheterization. The authors used multivariable analysis of covariance to compare high-density lipoprotein particle (HDL-P) subfractions across groups, and Cox proportional hazards modeling to determine associations between HDL-P subfractions and time to death or major adverse cardiac events. Results Mean HDL-P size was greater in HFrEF than HFpEF, both of which were greater than in no HF (all 2-way p  Conclusions In the largest analysis of HDL-P subfractions in HF to date, derangements in HDL-P subfractions were identified that were more severe in HFrEF than HFpEF and were independently associated with adverse outcomes. These data may help refine risk assessment and provide new insights into the complex interaction of HDL and HF pathophysiology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    18
    Citations
    NaN
    KQI
    []