Kinetics of the Enzymatic Cellulose Hydrolysis by the Endoglucanase from the Extremophile S. solfataricus

2013 
Abstract The hydrolysis of cellulose is a necessary step to provide sugars from biomass, e.g. for fermentation. A promising approach is to hydrolyse cellulose enzymatically. Naturally, cellulolytic enzymes appear in mixtures of at least four different enzyme activities. Until now, research has focused on these enzyme mixtures. But, to accurately describe cellulose hydrolysis, it is essential to identify the individual kinetic parameters of the employed cellulases. Therefore, we investigated the behaviour of the extremophile endoglucanase (EG) SSO1354 from S. solfataricus on cello-oligomers (COs) to determine its kinetic performance. The properties of interest were the binding affinity as function of the chain length of the cellulose as well as inhibitory and activating effects of short COs. We monitored the evolution of the chain length distribution over the reaction time using thin layer chromatography and the formation of reducing sugars with a colorimetric assay. According to the measurements, the cellulase requires a chain length of four or more glucose units to be catalytically active and the enzyme gets more active with increasing chain length. Also, cellotriose (C3) is an inhibitor for the used EG, and cellobiose (C2) seems to be an enzyme activator, in contrast to literature. With the obtained results it should be possible to mechanistically describe the hydrolysis of cellulose.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    0
    Citations
    NaN
    KQI
    []