A 3D construct based on mesenchymal stromal cells, collagen microspheres and plasma clot supports the survival, proliferation and differentiation of hematopoietic cells in vivo

2020 
The hematopoietic niche is a specialized microenvironment that supports the survival, proliferation and differentiation of hematopoietic stem progenitor cells (HSPCs). Three-dimensional (3D) models mimicking hematopoiesis might allow in vitro and in vivo studies of the hematopoietic (HP) process. Here, we investigate the capacity of a 3D construct based on non-adherent murine bone marrow mononuclear cells (NA-BMMNCs), mesenchymal stromal cells (MSCs) and collagen microspheres (CMs), all embedded into plasma clot (PC) to support in vitro and in vivo hematopoiesis. Confocal analysis of the 3D hematopoietic construct (3D-HPC), cultured for 24 h, showed MSC lining the CM and the NA-BMMNCs closely associated with MSC. In vivo hematopoiesis was examined in 3D-HPC subcutaneously implanted in mice and harvested at different intervals. Hematopoiesis in the 3D-HPC was evaluated by histology, cell morphology, flow cytometry, confocal microscopy and hematopoietic colony formation assay. 3D-HPC implants were integrated and vascularized in the host tissue, after 3 months of implantation. Histological studies showed the presence of hematopoietic tissue with the presence of mature blood cells. Cells from 3D-HPC showed viability greater than 90%, expressed HSPCs markers, and formed hematopoietic colonies, in vitro. Confocal microscopy studies showed that MSCs adhered to the CM and NA-BMMNCs were scattered across the 3D-HPC area and in close association with MSC. In conclusion, the 3D-HPC mimics a hematopoietic niche supporting the survival, proliferation and differentiation of HSPCs, in vivo. 3D-HPC may allow evaluation of regulatory mechanisms involved in hematopoiesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []