Analysis of the moment arms and kinematics of ostrich (Struthio camelus) double patellar sesamoids

2017 
The patella (“kneecap”) is a biomechanically important feature of the tendinous insertion of the knee extensor muscles, able to alter the moment arm lengths between its input and output tendons, and so modify the mechanical advantage of the knee extensor muscle. However, patellar gearing function is little-explored outside of humans, and the patella is often simplified or ignored in biomechanical models. Here, we investigate patellar gearing and kinematics in the ostrich—frequently used as an animal analogue to human bipedal locomotion and unusual in its possession of two patellae at the knee joint. We use x-ray reconstruction of moving morphology (XROMM) techniques to capture the kinematics of the patellae in an adult ostrich cadaver, passively manipulated in flexion-extension. Moment arm ratios between the input and output tendons of each patella are calculated from kinematically determined centers of patellofemoral joint rotation. Both patellae are found to decrease the mechanical advantage of the extensor muscle–tendon complex, decreasing the tendon output force for a given muscle input force, but potentially increasing the relative speed of knee extension. Mechanically and kinematically, the proximal patella behaves similarly to the single patella of most other species, whereas the distal patella has properties of both a fixed retroarticular process and a moving sesamoid. It is still not clear why ostriches possess two patellae, but we suggest that the configuration in ostriches benefits their rapid locomotion and provides tendon protection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    11
    Citations
    NaN
    KQI
    []