Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor

2017 
Research in electric double-layer capacitors (EDLCs) and rechargeable batteries is converging to target systems that have battery-level energy density and capacitor-level cycling stability and power density. This research direction has been facilitated by the use of redox-active electrolytes that add faradaic charge storage to increase energy density of the EDLCs. Aqueous redox-enhanced electrochemical capacitors (redox ECs) have, however, performed poorly due to cross-diffusion of soluble redox couples, reduced cycle life, and low operating voltages. In this manuscript, we propose that these challenges can be simultaneously met by mechanistically designing a liquid-to-solid phase transition of oxidized catholyte (or reduced anolyte) with confinement in the pores of electrodes. Here we demonstrate the realization of this approach with the use of bromide catholyte and tetrabutylammonium cation that induces reversible solid-state complexation of Br2/Br3–. This mechanism solves the inherent cross-diffusion i...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    66
    Citations
    NaN
    KQI
    []