Application of template matching technique to particle detection in electron micrographs

2004 
Template matching together with the comprehensive theory of image formation in electron microscope provides an optimal (in Bayesian sense) tool for solving one of the outstanding problems in single particle analysis, i.e., automatic selection of particle views from noisy micrograph fields. The method is based on the assumption that the reference three-dimensional structure is known and that the relevant parameters of the model of the image formation process can be estimated. In the first stage of the procedure, a set of possible particle views is generated using the available reference structure. The template images are constructed as linear combinations of available particle views using a clustering technique. Next, the micrograph noise characteristic is established using an automated contrast transfer function (CTF) estimation procedure. Finally, the CTF parameters calculated are used to construct a matched filter and correlation functions corresponding to the available template images are calculated. In order to alleviate the problem of the biased caused by varying image formation conditions, a decision making strategy based on the predicted distribution of correlation coefficients is proposed. It is demonstrated that due to the inclusion of CTF considerations, the template matching method performed very well in a broad range of microscopy conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    55
    Citations
    NaN
    KQI
    []