Design and optimization of thin film polarizer at the wavelength of 1540 nm using differential evolution algorithm

2018 
In this paper, a thin film polarizer at the wavelength of 1540 nm in infrared region was designed and optimized using differential evolution method. It is shown how the algorithm’s parameters can change the output result to obtain the best consequence of optimization. This polarizer consists of a few pairs of high and low refractive index dielectric materials, titanium dioxide and silicon dioxide, respectively, with \(BK_{7}\) glass substrate and the angle of incident light was supposed 56° that is the Brewster angle for \(BK_{7}\) glass. Our final optimized polarizer has 91.20 and 0.336% transmittance for P and S polarization, respectively, and a 271 ratio of \(\frac{{T_{P} }}{{T_{S} }}\) which has high significance for this polarizer. It consists of eight pairs of layers with low and high refractive index materials and 3369.1 nm physical thickness which is used to separate S and P polarized light for Q-switching process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    8
    Citations
    NaN
    KQI
    []