Physical machine learning outperforms "human learning" in Quantum Chemistry

2019 
Two types of approaches to modeling molecular systems have demonstrated high practical efficiency. Density functional theory (DFT), the most widely used quantum chemical method, is a physical approach predicting energies and electron densities of molecules. Recently, numerous papers on machine learning (ML) of molecular properties have also been published. ML models greatly outperform DFT in terms of computational costs, and may even reach comparable accuracy, but they are missing physicality - a direct link to Quantum Physics - which limits their applicability. Here, we propose an approach that combines the strong sides of DFT and ML, namely, physicality and low computational cost. We derive general equations for exact electron densities and energies that can naturally guide applications of ML in Quantum Chemistry. Based on these equations, we build a deep neural network that can compute electron densities and energies of a wide range of organic molecules not only much faster, but also closer to exact physical values than current versions of DFT. In particular, we reached a mean absolute error in energies of molecules with up to eight non-hydrogen atoms as low as 0.9 kcal/mol relative to CCSD(T) values, noticeably lower than those of DFT (approaching ~2 kcal/mol) and ML (~1.5 kcal/mol) methods. A simultaneous improvement in the accuracy of predictions of electron densities and energies suggests that the proposed approach describes the physics of molecules better than DFT functionals developed by "human learning" earlier. Thus, physics-based ML offers exciting opportunities for modeling, with high-theory-level quantum chemical accuracy, of much larger molecular systems than currently possible.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    141
    References
    6
    Citations
    NaN
    KQI
    []